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 On-site Leak Detection & Repair (LDAR) surveys 
using handheld Optical Gas Imaging (OGI) cameras
• Jurisdictions like British Columbia, Canada regulate 

3x/year LDAR surveys at most facilities

 But OGI surveys have many limitations:
• Can’t detect methane in exhaust plumes
• Limited by line-of-sight access (e.g. tank tops)
• Subject to operator skill
• Ineffective at low temperatures
• Non-quantitative (despite “QOGI”)
• Labour intensive / costly

Current Practices in Detecting Methane Sources
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The Limits of OGI Surveys and the Need for “Reconciliation”

 Contrast in reported methane emissions 
magnitudes via LDAR vs. aerial 
measurements
• Set of 362 sites in British Colombia, Canada 

subject to up to 3×/year regulated OGI 
LDAR surveys

 Aerial surveys finding ~24× more methane 
at exact same sites
• Consistent pattern now seen in multiple 

studies
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The Limits of OGI Surveys and the Need for “Reconciliation”

 Excluding combustion sources and vented 
sources in aerial data likely not 
seen/included in LDAR data
• Still 8× difference at same sites
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What do Regulated OGI/LDAR Surveys Find?
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 Sources detected in OGI surveys are generally complimentary to those detected in 
source-resolved aerial surveys

All LDAR Sources LDAR Sources at Compressors LDAR Sources at Tanks

80% Connectors/Valves/Other 94% Connectors/Valves/Other 42% Connectors/Valves/Other



Measurement Reporting & Verification (MRV) Goals

 Leverage one or more measurement approaches to:
• Improve accuracy of traditional bottom-up inventory estimates
• Preserve source-level detail for mitigation / policy / regulation
• Define meaningful uncertainties on estimates
• Derive robust/verified methane intensities



At Least Six Key Challenges for MRV 

1. Quantification uncertainty of chosen 
measurement technology
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At Least Six Key Challenges for MRV

1. Quantification uncertainty of chosen technology

2. Probability of detection (POD) / sensitivity limit
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At Least Six Key Challenges for MRV

1. Quantification uncertainty of chosen technology

2. Probability of detection (POD) / sensitivity limit

3. Stark differences among facility types
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35m

350m

Contrast between two different “oil facilities”

10× more emissions 
in this case!
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1. Quantification uncertainty of chosen technology

2. Probability of detection (POD) / sensitivity limit

3. Stark differences among facility types

4. Highly-skewed, non-smooth, and potentially 
discontinuous source distributions

5. Finite population effects

6. Intermittency and variability effects at 
different time-scales
• Generally confounded with POD, measurement 

uncertainty, and sample size effects

Methane Rate [kg/h]
Concentration [%]
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+

c) Total Inventory
Johnson, Conrad, & Tyner 
(2023) Communications 

Earth & Environment 
(doi: 10.1038/s43247-023-

00769-7) Legend
  Bridger GML characteristics and assorted data
  Monte Carlo analysis of quantification uncertainty and detection sensitivity
  Population scaling, including bootstrap  analysis of sample size effects
  Estimated partial inventory; measured and unmeasured sources
  Estimated total inventory

Protocol to Create 
a Hybrid Top-

Down/Bottom-Up 
Measurement-

Based Inventory

https://doi.org/10.1038/s43247-023-00769-7
https://doi.org/10.1038/s43247-023-00769-7


EERL 2021 National Methane Census

 National-scale effort
• ~8200 sites across 3 

provinces
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 Measured Methane Intensities
• Methane emitted per unit of energy
• Underpins global measurement, 

reporting, & verification (MRV) 
standards

 Excellent agreement with completely 
independent satellite measurements
• “Gap closed” between top-down and 

bottom-up!

Comparison with Independent Satellite Measurements
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2021 National Measurement-Based Methane Inventory by Source
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British Columbia Alberta Saskatchewan



The “Pie Chart Problem”
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British Columbia Alberta Saskatchewan

EERL 2021
Measurement-Based

Inventory

Canada’s
Official Inventory

Estimate

Total: 1921 ktCH4

Total: 1227 ktCH4



Operator-Specific Methane Intensities

 Directly comparable methane 
intensities at the same facility types 

• Operator 2 & 3 have similar 
production in PJ, but factor ~30
difference in intensity

 Highlights:
• Need for collective action
• Hybrid inventory method can 

accurately quantify intensities with 
defined uncertainties
– Should exceed “gold standard” 

of OGMP2.0; working with one 
company to implement
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 Survey of ~12800 facilities/wells 
in Saskatchewan in 2023
• 38 distinct sample strata 

(i.e., classes of facilities)

 Empirical Convergence Analysis
• Reproduce inventory with random 

sub-samples of decreasing size

 Demonstrates how completely 
different sub-samples generate 
equivalent results

Required Sample Sizes?? – Ongoing Sub-Sampling Analyses
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 For any single random sub-
sample, do the derived 
uncertainties include the actual 
result >95% of the time?

 Uncertainty grows as sample 
size reduced (as expected)

 Currently specific to underlying 
data, but implies ability to 
choose sample size to meet 
target uncertainty

Required Sample Sizes?? – Ongoing Sub-Sampling Analyses
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Some Closing Thoughts for Discussion

 Optimal MRV combines various measurement approaches with detailed analytics
• “Reconciliation” should be viewed as an opportunity to combine information

 Published “hybrid” inventory approach can close the gap between top-down and 
bottom-up approaches while preserving source details
• Canada is poised to incorporate our direct measurements into their 

official IPCC inventory report later this year
• Working with UNEP and EcoPetrol to complete a measurement-based inventory in Colombia

 Ongoing work to evolve and test protocol with potential to define sample-size 
requirements to achieve a target level of uncertainty
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