Measurement-Based Methane Inventories & Intensities Using Source-Resolved Aerial Data & Robust Analytics

Global Methane Forum, Geneva, March 20, 2024

Matthew R. Johnson, Bradley M. Conrad, David R. Tyner, Shona E. Wilde

Energy & Emissions Research Lab., Mechanical & Aerospace Engineering, Carleton University, Ottawa, ON <u>Matthew.Johnson@carleton.ca</u> <u>https://carleton.ca/eerl</u>

Current Practices in Detecting Methane Sources

- On-site Leak Detection & Repair (LDAR) surveys using handheld Optical Gas Imaging (OGI) cameras
 - Jurisdictions like British Columbia, Canada regulate 3x/year LDAR surveys at most facilities
- But OGI surveys have many limitations:
 - Can't detect methane in exhaust plumes
 - Limited by line-of-sight access (e.g. tank tops)
 - Subject to operator skill
 - Ineffective at low temperatures
 - Non-quantitative (*despite "QOGI"*)
 - Labour intensive / costly

The Limits of OGI Surveys and the Need for "Reconciliation"

- Contrast in reported methane emissions magnitudes via LDAR vs. aerial measurements
 - Set of 362 sites in British Colombia, Canada subject to up to 3×/year regulated OGI LDAR surveys
- Aerial surveys finding ~24× more methane at exact same sites
 - Consistent pattern now seen in multiple studies

Carleton

University

The Limits of OGI Surveys and the Need for "Reconciliation"

- Excluding combustion sources and vented sources in aerial data likely not seen/included in LDAR data
 - Still 8× difference at same sites

What do Regulated OGI/LDAR Surveys Find?

 Sources detected in OGI surveys are generally *complimentary* to those detected in source-resolved aerial surveys

Measurement Reporting & Verification (MRV) Goals

- Leverage one or more *measurement* approaches to:
 - Improve accuracy of traditional bottom-up inventory estimates
 - Preserve source-level detail for mitigation / policy / regulation
 - Define *meaningful* uncertainties on estimates
 - Derive robust/verified methane intensities

At Least Six Key Challenges for MRV

1. Quantification uncertainty of chosen measurement technology

ENERGY AND EMISSIONS

Ρ

University

- 1. Quantification uncertainty of chosen technology
- 2. Probability of detection (POD) / sensitivity limit

B.M. Conrad, D.R. Tyner, M.R. Johnson (2023) Robust Probabilities of Detection and Quantification Uncertainty for Aerial Methane Detection: Examples for Three Airborne Technologies, *Remote Sensing of Environment* 288:113499 (doi: 10.1016/j.rse.2023.113499)

- 1. Quantification uncertainty of chosen technology
- 2. Probability of detection (POD) / sensitivity limit
- 3. Stark differences among facility types

Contrast between two different "oil facilities"

- 1. Quantification uncertainty of chosen technology
- 2. Probability of detection (POD) / sensitivity limit
- 3. Stark differences among facility types
- Highly-skewed, <u>non-smooth</u>, and potentially discontinuous source distributions

- 1. Quantification uncertainty of chosen technology
- 2. Probability of detection (POD) / sensitivity limit
- 3. Stark differences among facility types
- Highly-skewed, <u>non-smooth</u>, and potentially discontinuous source distributions
- **5**. Finite population effects

At Least Six Key Challenges for MRV

- 1. Quantification uncertainty of chosen technology
- 2. Probability of detection (POD) / sensitivity limit
- 3. Stark differences among facility types
- Highly-skewed, <u>non-smooth</u>, and potentially discontinuous source distributions
- 5. Finite population effects
- 6. Intermittency and variability effects at different time-scales
 - Generally confounded with POD, measurement uncertainty, and sample size effects

Protocol to Create a Hybrid Top-Down/Bottom-Up <u>Measurement-</u> <u>Based</u> Inventory

Johnson, Conrad, & Tyner (2023) Communications Earth & Environment (doi: <u>10.1038/s43247-023-</u> <u>00769-7</u>)

EERL 2021 National Methane Census

- National-scale effort
 - ~8200 sites across 3 provinces

Comparison with Independent Satellite Measurements

- Measured Methane Intensities
 - Methane emitted per unit of energy
 - Underpins global measurement, reporting, & verification (MRV) standards
- Excellent agreement with completely independent satellite measurements
 - "Gap closed" between top-down and bottom-up!

National Measurement-Based Methane Inventory by Source

The "Pie Chart Problem"

Operator-Specific Methane Intensities

- Directly comparable methane intensities at the same facility types
 - Operator 2 & 3 have similar production in PJ, but factor ~30 difference in intensity
- Highlights:
 - Need for collective action
 - Hybrid inventory method can accurately quantify intensities with defined uncertainties
 - Should exceed "gold standard" of OGMP2.0; working with one company to implement

Required Sample Sizes?? – Ongoing Sub-Sampling Analyses

- Survey of ~12800 facilities/wells in Saskatchewan in 2023
 - 38 distinct sample strata (i.e., classes of facilities)
- Empirical Convergence Analysis
 - Reproduce inventory with random sub-samples of decreasing size
- Demonstrates how completely different sub-samples generate equivalent results

Required Sample Sizes?? – Ongoing Sub-Sampling Analyses

- For any single random subsample, do the derived uncertainties include the actual result >95% of the time?
- Uncertainty grows as sample size reduced (as expected)
- Currently specific to underlying data, but implies ability to choose sample size to meet target uncertainty

- Optimal MRV combines various measurement approaches with detailed analytics
 - "Reconciliation" should be viewed as an opportunity to combine information
- Published "hybrid" inventory approach can close the gap between top-down and bottom-up approaches while preserving source details
 - Canada is poised to incorporate our direct measurements into their official IPCC inventory report later this year
 - Working with UNEP and EcoPetrol to complete a measurement-based inventory in Colombia
- Ongoing work to evolve and test protocol with potential to define sample-size requirements to achieve a target level of uncertainty

Acknowledgements

BCOil & Gas COMMISSION

Natural Resources Canada

es Ressources naturelles Canada

Environment and Climate Change Canada Environnement et Changement climatique Canada

BC Oil and Gas Research and Innovation Society

UN () environment programme

*

Website: https://carleton.ca/eerl

Methane Inventories & Sources

- M.R. Johnson, D.R. Tyner, B.M. Conrad (2023) Creating Measurement-Based Oil and Gas Sector Methane Inventories using Source-Resolved Aerial Surveys, Communications Earth & Environment, 4:139 (doi: <u>10.1038/s43247-023-00769-7</u>)
- B.M. Conrad, D.R. Tyner, H.Z. Li, D. Xie, M.R. Johnson (2023) A Measurement-Based Upstream Oil and Gas Methane Inventory for Alberta, Canada Reveals Higher Emissions and Different Sources than Official Estimates, Communications Earth & Environment, 4:416 (doi: <u>10.1038/s43247-023-01081-0</u>)
- M.R. Johnson, D.R. Tyner, B.M. Conrad (2023) Origins of Oil and Gas Sector Methane Emissions: On-Site Investigations of Aerial Measured Sources, Environmental Science & Technology, 57(6):2484-2494 (doi: <u>10.1021/acs.est.2c07318</u>)
- B.M. Conrad, D.R. Tyner, M.R. Johnson (2023) The Futility of Relative Methane Reduction Targets in the Absence of Measurement-Based Inventories, Environmental Science & Technology, 57(50):21092-21103 (doi: <u>10.1021/acs.est.3c07722</u>).
- S.A. Festa-Bianchet, D.R. Tyner, S.P. Seymour, M.R. Johnson (2023) Methane Venting at Cold Heavy Oil Production with Sand (CHOPS) Facilities is Significantly Underreported and led by High-Emitting Wells with Low or Negative Value, Environmental Science & Technology, 57(8):3021-3030 (doi: <u>10.1021/acs.est.2c06255</u>)
- D.R. Tyner, M.R. Johnson (2021) Where the Methane Is—Insights from Novel Airborne LiDAR Measurements Combined with Ground Survey Data, Environmental Science & Technology, 55(14):9773–9783 (doi: <u>10.1021/acs.est.1c01572</u>)

Methane Detection & Quantification

 B.M. Conrad, D.R. Tyner, M.R. Johnson (2023) Robust Probabilities of Detection and Quantification Uncertainty for Aerial Methane Detection: Examples for Three Airborne Technologies, Remote Sensing of Environment, 288:113499 (doi: <u>10.1016/j.rse.2023.113499</u>)

Methane Detection & Quantification (continued)

- S.A. Festa-Bianchet, Z.R. Milani, M.R. Johnson (2023) Methane Venting from Uncontrolled Production Storage Tanks at Conventional Oil Wells – Temporal Variability, Root Causes, and Implications for Measurement, *Elementa*, 11:1 (doi: <u>10.1525/elementa.2023.00053</u>)
- M.R. Johnson, D.R. Tyner, A.J. Szekeres (2021) Blinded evaluation of airborne methane source detection using Bridger Photonics LiDAR, Remote Sensing of Environment, 259, 112418. (doi: <u>10.1016/j.rse.2021.112418</u>)
- D. Zavala-Araiza, S.C. Herndon, J.R. Roscioli, T.I. Yacovitch, M.R. Johnson, D.R. Tyner, M. Omara, B. Knighton (2018) Methane emissions from oil and gas production sites in Alberta, Canada, *Elementa*, 6(1):27 (doi: <u>10.1525/elementa.284</u>)
- R. Roscioli, S.C. Herndon, T.I. Yacovitch, W.B. Knighton, D. Zavala-Araiza, M.R. Johnson, D.R. Tyner (2018) Characterization of Methane Emissions from Five Cold Heavy Oil Production with Sands (CHOPS) Facilities, Journal of the Air & Waste Management Association, 68(7):671-684 (doi: 10.1080/10962247.2018.1436096).
- M.R. Johnson, D.R. Tyner, S. Conley, S. Schwietzke, D. Zavala-Araiza (2017) Comparisons of Airborne Measurements and Inventory Estimates of Methane Emissions in the Alberta Upstream Oil and Gas Sector, Environmental Science & Technology, 51(21):13008-13017. (doi: <u>10.1021/acs.est.7b03525</u>)

Fugitive Emissions Detection and Quantification

- C.A. Brereton, L.J. Campbell, M.R. Johnson (2020) Influence of turbulent Schmidt number on fugitive emissions source quantification, *Atmospheric Environment X*, 7:100083 (doi: <u>10.1016/j.aeaoa.2020.100083</u>)
- C.A. Brereton, L.J. Campbell, M.R. Johnson (2019) Computationally Efficient Quantification of Unknown Fugitive Emissions Sources, Atmospheric Environment, 3(100035):1-13 (doi: <u>10.1016/j.aeaoa.2019.100035</u>)

Fugitive Emissions Detection and Quantification (*continued***)**

- C.A. Brereton, I.M. Joynes, L.J. Campbell, M.R. Johnson (2018), Fugitive Emission Source Characterization Using a Gradient-Based
 Optimization Scheme and Scalar Transport Adjoint, Atmospheric Environment, 181:106-116 (doi: <u>10.1016/j.atmosenv.2018.02.014</u>)
- C.A. Brereton, M.R. Johnson (2012) Identifying Sources of Fugitive Emissions in Industrial Facilities using Trajectory Statistical Methods, Atmospheric Environment, 51:46-55. (doi: 10.1016/j.atmosenv.2012.01.057)

Methane Regulatory Analysis, Techno-economics, and Mitigation Policy

- B.M. Conrad, D.R. Tyner, M.R. Johnson (2023) The futility of relative methane reduction targets in the absence of measurementbased inventories, *Environmental Science & Technology*, in press (doi: <u>10.1021/acs.est.3c07722</u>)
- M.R. Johnson, D.R. Tyner (2020) A case study in competing methane regulations: Will Canada's and Alberta's contrasting regulations achieve equivalent reductions? *Elementa: Science of the Anthropocene*, 8(1), p.7. (doi: <u>10.1525/elementa.403</u>)
- D.R. Tyner, M.R. Johnson (2018), A Techno-Economic Analysis of Methane Mitigation Potential from Reported Venting at Oil Production Sites in Alberta, Environmental Science & Technology, 52(21):12877-12885 (doi: <u>10.1021/acs.est.8b01345</u>)

A complete / regularly updated publication list can be found at: <u>https://carleton.ca/eerl/journal-articles/</u>