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Current Practices in Detecting Methane Sources
I

= On-site Leak Detection & Repair (LDAR) surveys
using handheld Optical Gas Imaging (OGIl) cameras

e Jurisdictions like British Columbia, Canada regulate
3x/year LDAR surveys at most facilities

= But OGI surveys have many limitations:
e Can’t detect methane in exhaust plumes
e Limited by line-of-sight access (e.g. tank tops)

e Subject to operator skill

e |neffective at low temperatures

e Non-quantitative (despite “QOGI”)
e Labour intensive / costly
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The Limits of OGI Surveys and the Need for “Reconciliation”

= Contrastin reported methane emissions
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The Limits of OGI Surveys and the Need for “Reconciliation”

= Excluding combustion sources and vented
sources in aerial data likely not
seen/included in LDAR data

e Still 8x difference at same sites
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What do Regulated OGI/LDAR Surveys Find?

e
All LDAR Sources
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= Sources detected in OGI surveys are generally complimentary to those detected in
source-resolved aerial surveys



Measurement Reporting & Verification (MRV) Goals

= Leverage one or more measurement approaches to:
e Improve accuracy of traditional bottom-up inventory estimates
e Preserve source-level detail for mitigation / policy / regulation
e Define meaningful uncertainties on estimates

e Derive robust/verified methane intensities
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At Least Six Key Challenges for MRV

1. Quantification uncertainty of chosen
measurement technology
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At Least Six Key Challenges for MRV

1. Quantification uncertainty of chosen technology
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B.M. Conrad, D.R. Tyner, M.R. Johnson (2023) Robust Probabilities of Detection and
Quantification Uncertainty for Aerial Methane Detection: Examples for Three
Airborne Technologies, Remote Sensing of Environment 288:113499
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At Least Six Key Challenges for MRV
e —

1. Quantification uncertainty of chosen technology

2. Probability of detection (POD) / sensitivity limit

3. Stark differences among facility types
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At Least Six Key Challenges for MRV

Quantification uncertainty of chosen technology

Probability of detection (POD) / sensitivity limit

Stark differences among facility types

Highly-skewed, non-smooth, and potentially

discontinuous source distributions
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At Least Six Key Challenges for MRV

Quantification uncertainty of chosen technology

Probability of detection (POD) / sensitivity limit

Stark differences among facility types

Highly-skewed, non-smooth, and potentially

discontinuous source distributions

Finite population effects
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At Least Six Key Challenges for MRV

Quantification uncertainty of chosen technology
Probability of detection (POD) / sensitivity limit

Stark differences among facility types

s wo e

Highly-skewed, non-smooth, and potentially
discontinuous source distributions

h

Finite population effects

6. Intermittency and variability effects at
different time-scales

e Generally confounded with POD, measurement
uncertainty, and sample size effects
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b) Unmeasured Sources
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EERL 2021 National Methane Census
= National-scale effort

e ~8200 sites across 3
provinces
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Comparison with Independent Satellite Measurements
e

= Measured Methane Intensities o a) Western Canada
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2021 National Measurement-Based Methane Inventory by Source

British Columbia
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The “Pie Chart Problem”

EERL 2021
Measurement-Based
Inventory
Total: 1921 ktCH,

Canada’s
Official Inventory

Estimate
Total: 1227 ktCH,

British Columbia
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Operator-Specific Methane Intensities

= Directly comparable methane
intensities at the same facility types
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Required Sample Sizes?? — Ongoing Sub-Sampling Analyses

= Survey of ~12800 facilities/wells
in Saskatchewan in 2023

e 38 distinct sample strata
(i.e., classes of facilities)

= Empirical Convergence Analysis

e Reproduce inventory with random
sub-samples of decreasing size

= Demonstrates how completely
different sub-samples generate
equivalent results
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Required Sample Sizes?? — Ongoing Sub-Sampling Analyses

= For any single random sub-
sample, do the derived
uncertainties include the actual
result >95% of the time?

= Uncertainty grows as sample
size reduced (as expected)

= Currently specific to underlying
data, but implies ability to
choose sample size to meet
target uncertainty
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Some Closing Thoughts for Discussion

= Optimal MRV combines various measurement approaches with detailed analytics
e “Reconciliation” should be viewed as an opportunity to combine information

= Published “hybrid” inventory approach can close the gap between top-down and
bottom-up approaches while preserving source details
e Canada is poised to incorporate our direct measurements into their
official IPCC inventory report later this year
e Working with UNEP and EcoPetrol to complete a measurement-based inventory in Colombia

= Ongoing work to evolve and test protocol with potential to define sample-size
requirements to achieve a target level of uncertainty
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